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ON HYPERSONIC FLOW PAST OF A LIFT AIRFOIL* 

O.S. RYZHOV and E.D. TEREWT'EV 

The asymptotic solution of the Navier- Stokes equation is studiedat large distance 
past of a lift airfoil of finite dimensions. The flow field is divided in three 
regions: the external flow, the laminar trail and the subtrail. The main attention 
is given to singularities associated with the lift force. It is shown that the sub- 
trail, generated only in the presence of lift, has the contour of an oscillating 
cord, and the gas particles in every transverse plane inside the subtrail are de- 
fined only by the radial components of the velocity vector, if the coordinate origin 
is selected in a particular way. 

1. Analysis of flow intheexternal region and in the laminar trail. Let us 
consider a steady hypersonic flow at large distance from the airfoil. Let Pi be the gas 
density in the oncoming stream, U, its velocity along the I axis of a cylindrical system of 
coordinates (x, r', cp). We assume that in the unperturbed stream the pressure is zero.We con- 
sider the gas perfect, i.e. conforming to the Clapeyron equation of state, with the two spec- 
ific heats cp and c, assumed constant; we denote their ratio by x and assume 1 <x (2. The 
dependence of viscosity coefficients h, and i,, and of thermal conductivity k on specific 
enthalpy w are assumed linear: h, = h,,w, h, = kOwu, k = kow. The Prandtl number is denoted 

by Npr = c,A,,lk, . The independent variables, as well as the unknown functions are conven- 
iently specified as dimensionless quantities, using as the basic scale pm, U,, h,,. 

The principal terms of the asymptotic solution of the Navier- Stokes equations at con- 
siderabledistancespast of the lift airfoil in an axisymmetric hypersonic flow were obtained 
by V.V. Sychev /l/. Perturbations of the axisymmetric solution, which enabled the descrip- 
tion of the flow with a finite lift force, were studied in /2,3/. The derived in /1,3/ 
scheme of the stream has two essentially different regions: the external and the laminar 
trail. In the external region it is possible to neglect the effects of viscosity and thermal 
conductivity. The external region is separated from the oncoming stream by the curved shock 
wave whose structure was investigated in /4/. As shown in /3/, parameters of the hypersonic 
viscous stream behind the lift airfoil can be obtained in the external region from the solu- 
tion of the Cauchy problem for Euler's equations. For this it is necessary to specify the 
R&in-Hugoniot conditions behind the shock wave whose form with x--too is given by the 
equation 

rs = (bz)'IZ(l + b,z+ In x cos cp + . .) (1.1) 

where constants b and b, are determined by the drag and lift forces. The first term of ex- 
pansion (1.1) depends only on drag. The solution generated by it is well knownasthe solution 
of the problem of strong cord explosion defined by L-1. Sedov /5,6/. The second term of ex- 
oansion (1.1) is determined bv the lift force. Its solution was studied in /2/. It consists 
L 

of two terms. Let us write the form of solution for transverse velocities 

v, := _&i$,'* (L.~II (5) i- .+-'/* [Inmnt,,~(E) f v,~~(~)]cos 'P + . .I ( 

1 
n,=x+i ~b,([lnrv,l*(5)+Li(lla(jl)]sin(P -i- . . .)! E= * 

and analyze the direction field defined by the velocities (1.2). For this we introduce 

the transverse plane a Cartesian system of coordinates (y,z), with IJ directed along the 1 .-. _. 

1. 2; 

in 
ine 

of lift force F,. As follows from /2/, the flow field in the transverse plane derined by 
functions %11r vrtz 7 %12 possesses a central symmetry relative to point (y = -b’f*b, Inx, z = 
0). We shall consider the direction field generated by function vr13 and %13 * Itisprecisely 
with these functions that the presence of vortices in perturbation motion is associated. For 
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convenience of presentation we do not show the actual direction field, but the lines the 

tangents to which represent the indicated field. For it is sufficient to integrate the equa- 

tion dyldz = ~~~~i~,rn at constant 5. However, it is more convenient to have the last equation 
of the system in the form differentiable with respect to the parameter t 

dyldt = vr13 co9 cp - V~IS sin2q, dzldt = (v,,~ + v& cos cp sincp (1.3) 

Drawing the integral curves (1.3) through points lying on the semi-axis y= O,r>O, we 
obtain the picture represented in Fig.1. In the half-plane z<O the integral curves (1.3) 
are symmetric about the straight line Z= 0 to curves in Fig.1. The shock wave is represent- 
ed there by the dash line. ~~~~ h = yb-'/s-'i$ z1 = zb-'l~-'i~ ana in calculation x- 1.4 was as- 

sumed. However, for other values of xin the range 1<x<2 the qualitative pattern of in- 
tegral curves is not altered. It is seen from Fig.1 that in the transverse plane exists a 
system of local vortex zones. The first of these, adjoining the shock wave, u,* + z,* = 1 , is 
formed by open lines that begin and end on the shock wave. The remaining zones are formed 
by closed curves. These zones are between themselves separated by circles whose radius is 
determined by the equation %3(E)=O, their centers lie on the y=O axis, and the coordin- 
ate z1 is determined by points 5 for which c,,,(E)= 0. The first three points that determine 
the centers are E = 1; 0.533; 0.11. 

Using the explicit expression /2/ for terms with index 12 

VT1? = --dv,&, vem = v&E 

we calculate the longitudinal component of the vortex vector. With the accuracy to terms 
given in (1.2) we have 

(1.4) 

The component ~,inthe considered approximation is determined by the lift force; its 
intensity, when approaching the coordinate origin has an oscillating character with rapidly 
increasing amplitude. The curve of dependence of quantity A, on 5 when x=1.4 is represent- 
ed in Fig.2, which implies that A, has a singularity at E=O and the points of intermediate 
maxima 10, j behind the shock wave do not coincide with the vortex centers (the first two 
points of maximum are 5 = 0.20; 0.04). 

Let us carry out a similar analysis for the laminar trail. According to /3/ the trans- 
verse components of the velocity vector are of the form 

1 

vlp =-b’l’b,r(2+“)/2(X+‘) [v,z,(~)cos(ksln x)$ 
x+1 

v,3,(5)sin(k3lnx)]sincp+. . . , k3=* J/z 
The principal term in the expansion of radial velocity vtil defines the isotropicspread- 

ing independent of angle cp which is determined solely by the drag force. The addition to it 
depends, as in the external region, on angle 'p; the dependence of variable x is more com- 
plicated than in (1.2'. 

i 

0.5 

0 

Fig.1 Fig.2 

Here, in the study of the direction field produced by perturbations due to theliftforce 
it is necessary to consider two systems of equations in contrast to the external region,where 
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one can restrict the analysis to a single equation. Similarly to (1.3), we use parameter t 
and obtain 

-$- = v,*Ccos~ cp - vcF2c~in*cp, $- = (V,?, -!- UV2e)cos cp sincp (1.6) 

~=vresc0s2~ - ~~2, sin2rp, $ = (V,ts + v,:,)cosrpsin 9 (1.7) 

The integrals of system of Eqs.(l.G) are linked with the direction field in these cross 
sections z== conat for which cos(k,Inz)=l is satisfied; similarly the integrals of system (1.7) 
define the direction field there where sin(k,lnz)= 1. At intermediate points .T the solutions 
of both system must be multiplied by eos(k,lnz) and sin (ks Inz) and summed up. Drawing the 
integral curves of systems (1.6) and (1.7) from points lying on the semiaxis u=O,z>O, we 
obtain the patterns shown in Figs.3 and 4, respectively. For the half-plane ;<O the integ- 
ral curves of (1.6) and (1.7) are symmetric about the straight line z= 0 to curves in Figs. 
3 and 4. Here y, = yb-‘/~-‘f(X+l),~ P ,,,-‘i~-ll(X+lJ and in calculations it was assumed that y. = 1.4; 
N,, = 0.75; &J&, = 0.1. The pattern in Fig.3 is similar to the inner part shown in Fig.1, while 
the pattern in Fig.4 is substantially different. In the inner part of Fig.4 there is a vortex 
with its center on the axis II = 0, and in the external part we have on the axis z=o a 
source and a sink. 

Let us determine the longi-tudinal component of the vortex vector. With the accuracy to 
terms appearing in (1.5), we have 

The curves of dependence of A, and Al on 5 are shown in Fig.5. The component o,in the 
considered approximation is linked to the lift force. It is regular throughout the trans- 
verse plane, as it moves away from the coordinate origin it has an oscillating character, and 
its intensity rapidly diminishes. The maximum points 1o,I do not coincide with the centers 
of vortices. 
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2. The flow in the region of subtrail. Although the asymptotics of functions 

(1.5) do not have singularities as < + 0, nevertheless for small 5 in (1.5) the sequence 
order of terms may change, since function vr2, is proportional to L,whi.le vITC and vrss approach 
to constant quantities. The possibility of formal change of sequence of terms in the consid- 
ered here problem requires additional investigation, since the axis r = O(L = 0) is singular 

for the input Navier- Stokes equations. For the study of flow in the neighborhood of 5-O 
from the terms comparison of the first and second approximation with respect to the order of 
smallness (according to the power of the lengthwise variable x) we introduce new self-similar 

variable 9 and the characteristic transverse variable for the new region of subtrail, namely 
q' r/(//'/I&2(%+',) 

Solution in the region TJ = O(1) on the basis of the analysis given in /3/ of aSpQ?tOtiCS 

as C-0, we seek functions of the first and second approximation in the form 

1 v, = - 6'/~ar(2+x)lz(xt')~~~~ (71, (P.z) + . . . (2.1) 
X-t-1 

vg a & b‘lq-C~+x)l~tx+~) vlpsl (q, (P, I) + . . . 
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1 
&=I-- 

2(x+1) 
b’l~x-Xl(*~)v,sl (lj, $!?, 5) + . . . 

P= -&+/(x+l)psl (q, cp, 5) + . . . 

1 -P_ pa (lj, cp, 2) + 0 (x-‘-xl(x+l)) 
p= 2(x+1) z 

w = * Dz-~~(x+*)w31 (q, (0, I) + . . . 

The limit conditions at n--t 00 for the newly introduced functions are found from the 

asymptotics of the trail functions as 5-O. As the result, we have 

1 
v,s~~Tq-Bcos~+..., v,sl-+Bsincp +... (2.2) 

B = b, [C,cos (k&z) + C,sin (k&z)] 

Using the results of calculations in /3/ for x = 1.4; N,,, = 0.75; ?&.,, = 0.1, we have 

C, = 0.714; C, = 0.782; vxl, (0) = 0.449; pI1 (0) = 0.231; pI1 (0) = 0.373; wzl (0) = 1.571. 

Let us, also, assume that the dependence on x of unknown functions is "weak", for instance, 
for any c> 0 we have for vr31 

as x--too. In addition to conditions (2.2) at q + 00, we require that as I)+0 the unknown 

functions be bounded, have continuous second derivatives with respect to all arguments, and 
were periodic of period 2n with respect to angle cp. Substituting expansions (2.1) into the 
system of Navier-Stokes equations and equating terms of like powers of 5, we obtain a 
system of differential equations in partial derivatives. 

Projections of the equations of motion on the r and cp axes determine the pressure 

ap31/alj = 0, ap31/a(p = 0 

which with allowance for the limit condition (2.2) yields paI =pzl(0). 
The equation of heat transfer yields 

(2.3) 

Passing in Eq.(2.3) to the new independent variable n1 = inn and the new function LUCID = 
- @l 1 we arrive at the Laplace equation 

Using the conditions imposed on IL'~~ we find that function ws,, must be free of singular- 
ities in the whole plane ~)~,m. Then, on the basis of the Liouville theorem on harmonic func- 
tions, we conclude that ~~~~ is independent of 9, and cp. On the other hand, using the limit 
condition (2.2) as nl-co, we obtain that ~8~~ is also independent of variable I. Reverting 
to function ~3~ we have 1~'~~ = ~~~(0). The equation of state allows from known zsl and paI to 
determine 031 = p31/1~.3~ = pzl (0). 

For the longitudinal velocity we obtain the linear equation 

from which, introducing the variable 11~ we obtain the Laplace equation. Since the limit con- 
ditions presuppose the absence of singularity in vXal in all of the plane ~,'p and the in- 
dependence of x, we conclude that v~fr = vXtl (0). 

Projections of the equations of motion on the axes r and q in the first approximation 
enabled us to determine the pressure. However the esimate with respect to z of the subsequ- 
ent terms in the pressure expansion (2.1) allows the use of these equations once more, Taking 
also into account the equation of continuity, we obtain for ~',~r and vrIsl the system 

(2.4) 
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that consists of three equations for the determination of two functions vr3, and 
consequently overdetermined. 

uo3,, and is 

Let us consider the question of consistency of this system. Using the first equation we 
eliminate in the second the function vcpp31 and obtain 

Eliminating in the third equation of the system (2.4) function &,x~, using the first 
equation, we obtain 

(2.1;) 

Selecting the constant of integration equal two, so that (2.5) and (2.63 coincide we 
conclude that vQ1is to be subordinated to Eq.(2.5) and obtain vVsl from the first equation of 
system (2.4). Passing to the variable ql=ln~ and introducing the new function 

* 
V rS* = --‘i,exp PI,) + ev hh 

we obtain for &, the Laplace equation. 
.s 

Function vrat is determined in the bend -00 < Xl1 ( 
~,O<V<22n, and the condition 

2.73 

of periodicity with respect to 'p must be satisfied. 
Condition (2.2) as n-+00 and that of boundedness as II -0 imposed on function 

enables us to write for vr,, 
L.‘?.BL 

_) 
V r31 - --B exp (rl&es~ + 0 (exp (n,)), rll - m 
D 

V r31 = 0 (exp h)h q1 - --m 

(2.83 

Using for the construction of function u;,, the method of Fourier, we conclude that the 
solution of the Laplace equation that satisfies conditions (2.7) and (2.8) is unique and has 
the form 0 

vr.31 = --B exp (q&OS ‘p 

Reverting to input functions (2.11, we find that they are exactly equal to their limit 
values (2.2). The determination of parameters of flow inthe subtrail is completed. 

The problem consideredhere does not admit any other steady solutions, which in view of 
its very specific formulation is not obvious a priori. 

For a clearer idea of gas motion in the subtrail we pass to a Cartesian system of CO- 

ordinates (y,z) and write the projections of velocity onto these axes 

It follows from (2.9) that, if we introduce a new independent variable 

y, = u _ 2b'!&n(w+')S (2.10) 

and pass from the new Cartesian system of coordinates (ye,4 to a polar system (re, w), then 

the projections of the velocity vector on the axes rc and qe assume the form 

I 
“TC = m Tc’ “pe =o (2.11) 

Hence, in conformity with (2.11), the flowinthe transverse plane of the subtrail has a 

central symmetry about point y,= 0,~ = 0. Atthat point the transverse velocity vector vanish- 

es. Tracing the position of this point in the original Cartesian system of coordinates (3,~~;)~ 
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we find that in conformity with (2.10) it performs oscillations in the plane z= U with in- 
creasing amplitude as z increases 

y = 2b%pX~z(X+') [C, cos (&In 2) + c, sin (k,hI x)1 

The direction field is much simpler in the transverse plane of the subtrail, and is the 
field of velocities of a source with center at yC= U,z= U. The longitudinal component of 
the vortex vector ox vanishes in this approximation. 

We note in conclusion that the formation in the transverse plane of vortex zones associa- 
ted with the lift force is a common occurence for three-dimensional flows. Thus, in the sub- 
sonic flow over bodies subjected to the lift force, past of the body in the region of the 
laminar flow two vortices are formed which rotate in the opposite directions /7/. The pattern 
in hypersonic flow is much more complex, the presence of the lift force leads to the occur- 
ence of vortices converging to the center. 
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